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Table 3.1 RelaTive STRengTh of SelecTed acidS and TheiR conjugaTe baSeS

 
acid

 
approximate pKa

conjugate 
base

Strongest acid HSbF6 < −12 SbF6
− Weakest base

HI −10 I−

H2SO4 −9 HSO4
−

HBr −9 Br−

HCl −7 Cl−

C6H5SO3H −6.5 C6H5SO3
−

(CH3)2O
+

H −3.8 (CH3)2O

(CH3)2C=O
+

H −2.9 (CH3)2C=O

(CH3)O
+

H2 −2.5 CH3OH

H3O
+ −1.74 H2O

HNO3 −1.4 NO3
−

CF3CO2H 0.18 CF3CO2
−

HF 3.2 F−

C6H5CO2H 4.21 C6H5CO2
−

C6H5NH3
+ 4.63 C6H5NH2

CH3CO2H 4.75 CH3CO2
−

H2CO3 6.35 HCO3
−

CH3COCH2COCH3 9.0 CH3COC
−

HCOCH3

NH4
+ 9.2 NH3

C6H5OH 9.9 C6H5O
−

HCO3
− 10.2 CO3

2−

CH3NH3
+ 10.6 CH3NH2

H2O 15.7 HO−

CH3CH2OH 16 CH3CH2O
−

(CH3)3COH 18 (CH3)3CO−

CH3COCH3 19.2 −CH2COCH3

HC≡CH 25 HC≡C−

C6H5NH2 31 C6H5NH−

H2 35 H−

(i-Pr)2NH 36 (i-Pr)2N
−

NH3 38 −NH2

CH2=CH2 44 CH2=CH−

Weakest acid CH3CH3 50 CH3CH2
− Strongest base 
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Preface

“It’s OrganIC ChemIstry!”
That’s what we want students to exclaim after they become acquainted with our subject. Our 
lives revolve around organic chemistry, whether we all realize it or not. When we understand 
organic chemistry, we see how life itself would be impossible without it, how the quality of our 
lives depends upon it, and how examples of organic chemistry leap out at us from every direction. 
That’s why we can envision students enthusiastically exclaiming “It’s organic chemistry!” when, 
perhaps, they explain to a friend or family member how one central theme—organic chemistry—
pervades our existence. We want to help students experience the excitement of seeing the world 
through an organic lens, and how the unifying and simplifying nature of organic chemistry helps 
make many things in nature comprehensible. 

Our book makes it possible for students to learn organic chemistry well and to see the marvel-
ous ways that organic chemistry touches our lives on a daily basis. Our book helps students develop 
their skills in critical thinking, problem solving, and analysis—skills that are so important in 
today’s world, no matter what career paths they choose. The richness of organic chemistry lends 
itself to solutions for our time, from the fields of health care, to energy, sustainability, and the 
environment. After all, it’s organic chemistry!

Energized by the power of organic chemistry and the goals of making our book an even more 
efficient and relevant tool for learning, we have made a number of important changes in this edition.

NEw tO thIs edItIOn....
We share the same goals and motivations as our colleagues in wanting to give students the best 
experience that they can have in organic chemistry. We also share the challenges of deciding what 
students need to know and how the material should be organized. In that spirit, our reviewers and 
adopters have helped guide a number of the changes that we have made in this edition. 

Simultaneously achieving efficiency and adding breadth We have redistributed and 
streamlined material from our old Chapter 21 about phenols, aryl halides, aryl ethers, benzyne, 
and nucleophilic aromatic substitution in a way that eliminates redundancy and places it in the 
context of other relevant material earlier in the book. At the same time, we wanted to update and 
add breadth to our book by creating a new Chapter 21, Transition Metal Complexes about transition 
metal organometallic compounds and their uses in organic synthesis. Previously, transformations 
like the Heck-Mizoroki, Suzuki-Miyaura, Stille, Sonogashira, and olefin metathesis reactions had 
only been part of a special topic in our book, but as the exposure of undergraduates to these pro-
cesses has become more widespread, we felt it essential to offer instructors a chapter that they could 
incorporate into their course if they wished. Streamlining and redistributing the content in our old 
Chapter 21 allowed us to do this, and we thank our reviewers for helping to prompt this change. 

Transition metal organometallic complexes: Promoters of key bond-forming reac-
tions Our new Chapter 21 brings students a well-rounded and manageable introduction to transition 
metal organometallic complexes and their use in organic synthesis. We begin the chapter with an intro-
duction to the structure and common mechanistic steps of reactions involving transition metal organo-
metallic compounds. We then introduce the essentials of important cross-coupling reactions such as the 
Heck-Mizoroki, Suzuki-Miyaura, Stille, Sonogashira,  dialkylcuprate (Gilman), and olefin metathesis 
reactions at a level that is practical and useful for undergraduates. We intentionally organized the chap-
ter so that instructors could move directly to the practical applications of these important reactions if 
they desire, skipping general background information on transition metal complexes if they wished. 

Aromatic efficiency Our coverage of aromatic substitution reactions (Chapter 15) has been 
refocused by making our presentation of electrophilic aromatic substation more efficient at 
the same time as we included topics of nucleophilic aromatic substation and benzyne that had 
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 previously been in Chapter 21. Now all types of aromatic substitution reactions are combined in 
one chapter, with an enhanced flow that is exactly the same length as the old chapter solely on 
electrophilic aromatic reactions.

A focus on the practicalities of spectroscopy Students in an introductory organic 
chemistry course need to know how to use spectroscopic data to explore structure more than they 
need to understand the theoretical underpinnings of spectroscopy. To that end, we have shortened 
Chapter 9, Nuclear Magnetic Resonance by placing aspects of NMR instrumentation and theory in 
a new special topic that is a standalone option for instructors and students. At the same time, we 
maintain our emphasis on using spectroscopy to probe structure by continuing to introduce IR in 
Chapter 2, Families of Carbon Compounds: Functional Groups, Intermolecular Forces, and Infrared 
(IR) Spectroscopy, where students can learn to easily correlate functional groups with their respective 
infrared signatures and use IR data for problems in subsequent chapters. 

Organizing nucleophilic substitution and elimination topics Some instructors find 
it pedagogically advantageous to present and assess their students’ knowledge of nucleophilic 
substitution reactions before they discuss elimination reactions. Following the advice of some 
reviewers, we have adjusted the transition between Chapters 6, Nucleophilic Reactions: Properties 
and Substitution Reactions of Alkyl Halides and 7, Alkenes and Alkynes I: Properties and Synthesis ; 
Elimiantion Reactions of Alkyl Halides so that an instructor can pause cleanly after Chapter 6 to give 
an assessment on substitution, or flow directly into Chapter 7 on elimination reactions if they wish. 

Synthesizing the Material The double entendre in the name of our new Synthesizing the 
Material problems is not lost in the ether. In this new group of problems, found at the end 
of Chapters 6-21, students are presented with either multistep synthetic transformations and 
unknown products, or target molecules whose precursors they must deduce by retrosynthetic 
analysis. Problems in our Synthesizing the Material groups often call upon reagents and transfor-
mations covered in prior chapters. Thus, while students work on synthesizing a chemical material, 
they are also synthesizing knowledge. 

OngOIng PedagOgICal strengths
Mechanisms: Showing How Reactions Work Student success in organic chemistry 
hinges on understanding mechanisms. We do all that we can to insure that our mechanism boxes 
contain every detail needed to help students learn and understand how reactions work. Over the 
years reviewers have said that our book excels in depicting clear and accurate mechanisms. This 
continues to be true in our 12th edition, and it is now augmented by animated mechanism videos 
found in WileyPLUS with ORION. We also use a mechanistic approach when introducing new 
reaction types so that students can understand the generalities and appreciate common themes. For 
example, our chapters on carbonyl chemistry are organized according to the mechanistic themes 
of nucleophilic addition, acyl substitution, and reactivity at the α-carbon, Mechanistic themes are 
also emphasized regarding alkene addition reactions, oxidation and reduction, and electrophilic 
aromatic substitution. 
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• The reaction leading to the secondary carbocation (and ultimately to 2-bromo-
propane) has the lower free energy of activation. This is reasonable because its 
transition state resembles the more stable carbocation.

• The reaction leading to the primary carbocation (and ultimately to 1-bromopropane) 
has a higher free energy of activation because its transition state resembles a less stable 
primary carbocation. This second reaction is much slower and does not compete 
appreciably with the first reaction.

The reaction of HBr with 2-methylpropene produces only 2-bromo-2-methylpropane, 
for the same reason regarding carbocations stability. Here, in the first step (i.e., the attach-
ment of the proton) the choice is even more pronounced—between a tertiary carboca-
tion and a primary carbocation. Thus, 1-bromo-2-methylpropane is not obtained as a 
product of the reaction because its formation would require the formation of a primary 
 carbocation. Such a reaction would have a much higher free energy of activation than that 
leading to a tertiary carbocation.

• Rearrangements invariably occur when the carbocation initially formed by addition 
of HX to an alkene can rearrange to a more stable one (see Section 7.11 and Practice 
Problem 8.3).
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Figure 8.2 Free-energy diagrams 
for the addition of HBr to propene. 
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A MECHANISM FOR THE  
REACTION Stepped out reac-
tions with just the right amount 
of detail provide the tools for stu-
dents to understand rather than 
memorize reaction mechanisms.



xviii

Cementing knowledge by working problems: As athletes and musicians know, prac-
tice makes perfect. The same is true with organic chemistry. Students need to work all kinds of 
problems to learn chemistry. Our book has over 1400 in-text problems that students can use to 
cement their knowledge. Solved Problems help students learn where to begin. Practice Problems 
help them hone their skills and commit knowledge to memory. Many more problems at the end 
each chapter help students reinforce their learning, focus on specific areas of content, and assess 
their overall skill level with that chapter’s material. Learning Group Problems engage students in 
synthesizing information and concepts from throughout a chapter and can be used to facilitate 
collaborative learning in small groups, or serve as a culminating activity that demonstrates stu-
dent mastery over an integrated set of principles. Supplementary material provided to instructors 
includes suggestions about how to orchestrate the use of learning groups. Hundreds more online 
problems are available through WileyPLUS with ORION, to help students target their learning 
and achieve mastery. Instructors can flip their classroom by doing in-class problem solving using 
Learning Group Problems, clicker questions, and other problems, while allowing our textbook 
and tutorial resources in WileyPlus to provide out of class learning.

112  chApteR 3 AcIds And BAses: An Introduction to organic  reactions and their Mechanisms

3.4A electrophiles and nucleophiles

Because carbocations are electron-seeking reagents chemists call them electrophiles  (meaning 
electron-loving).

• Electrophiles are reagents that seek electrons.

• All Lewis acids are electrophiles. A carbocation, for example, is an electrophile that 
can accept an electron pair from a Lewis base. By doing so, the carbocation fills its 
valence shell.

+ −+C BCB

Lewis
base

Carbocation
A Lewis acid and

electrophile

• Carbon atoms that are electron poor because of bond polarity, but are not car-
bocations, can also be electrophiles. They can react with the electron-rich centers 
of Lewis bases in reactions such as the following:

−
C O+ BB

Lewis acid
(electrophile)

Lewis
base

−
OC

δ+ δ−

Carbanions are Lewis bases. Carbanions seek a proton or some other positive center 
to which they can donate their electron pair and thereby neutralize their negative charge.

When a Lewis base seeks a positive center other than a proton, especially that of a carbon 
atom, chemists call it a nucleophile (meaning nucleus loving; the nucleo- part of the name 
comes from nucleus, the positive center of an atom).

• A nucleophile is a Lewis base that seeks a positive center such as a positively 
charged carbon atom.

Since electrophiles are also Lewis acids (electron pair acceptors) and nucleophiles are 
Lewis bases (electron pair donors), why do chemists have two terms for them? The 
answer is that Lewis acid and Lewis base are terms that are used generally, but when one 
or the other reacts to form a bond to a carbon atom, we usually call it an electrophile or 
a nucleophile.

+
C NuCNu

−+

Electrophile Nucleophile

−
C O+ NuNu

ElectrophileNucleophile

−
OC

δ+ δ−

Identify the electrophile and the nucleophile in the following reaction, and add curved arrows to indicate the flow of 
electrons for the bond-forming and  bond-breaking steps.

+

N

H H−
NC

O
−

O

Solved Problem 3.3
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3.5  the stRength of BRønsted–lowRy Acids  
And BAses: Ka And pKa

STRATEgy AND ANSWER: The aldehyde carbon is electrophilic due to the electronegativity of the carbonyl oxy-
gen. The cyanide anion acts as a Lewis base and is the nucleophile, donating an electron pair to the carbonyl carbon, and 
 causing an electron pair to shift to the oxygen so that no atom has more than an octet of electrons.

δ+

δ−

−
NC

O

H
+

−

N

O

H

Many organic reactions involve the transfer of a proton by an acid–base reaction. An 
important consideration, therefore, is the relative strengths of compounds that could 
potentially act as Brønsted–Lowry acids or bases in a reaction.

In contrast to the strong acids, such as hcl and h2so4, acetic acid is a much weaker 
acid. When acetic acid dissolves in water, the following reaction does not proceed to 
completion:

CH3 O−CH3 OH
C

O

C

O

 +   H3O
+ +   H2O

Experiments show that in a 0.1 M solution of acetic acid at 25 °C only about 1% of the 
acetic acid molecules ionize by transferring their protons to water. Therefore, acetic acid 
is a weak acid. As we shall see next, acid strength is characterized in terms of acidity 
constant (Ka ) or pKa values.

3.5A the Acidity constant, Ka

Because the reaction that occurs in an aqueous solution of acetic acid is an equilibrium, 
we can describe it with an expression for the equilibrium constant (Keq):

Keq =
[h3o

+][ch3co2 

−
 ]

[ch3co2h][h2o]

For dilute aqueous solutions, the concentration of water is essentially constant (∼55.5 M), 
so we can rewrite the expression for the equilibrium constant in terms of a new constant 
(Ka) called the acidity constant:

Ka = Keq [h2o] =
[h3o

+][ch3co2 − ]
[ch3co2h]

At 25 °C, the acidity constant for acetic acid is 1.76 × 10−5.
We can write similar expressions for any weak acid dissolved in water. Using a general-

ized hypothetical acid (hA), the reaction in water is

hA  +  h2o    −   ⇀↽   −   −   −    h3o
+  +  A−

Practice Problem 3.4Use the curved-arrow notation to write the reaction that would take place between 
(ch3)2nh and boron trifluoride. Identify the Lewis acid, Lewis base, nucleophile, and 
electrophile and assign appropriate formal charges.
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SOlvED PROBlEMS 
model problem solving 
strategies.

PRACTICE  
PROBlEMS provides 
opportunities to check 
progress.

Laying the foundation earlier, getting to the heart of the matter quickly: Certain 
tools are absolutely key to success in organic chemistry. Among them is the ability to draw struc-
tural formulas quickly and correctly. In this edition, we help students learn these skills even sooner 
than ever before by moving coverage of structural formulas and the use curved arrows earlier in the 
text (Section 3.2). We have woven together instruction about Lewis structures, covalent bonds, 
and dash structural formulas, so that students build their skills in these areas as a coherent unit, 
using organic examples that include alkanes, alkenes, alkynes, and alkyl halides. Similarly, Lewis 
and Brønsted-Lowry acid-base chemistry is fundamental to student success. We present a stream-
lined and highly efficient route to student mastery of these concepts in Chapter 3. 

Increased emphasis on multistep synthesis: Critical thinking and analysis skills are key 
to problem solving and life. Multistep organic synthesis problems are perfectly suited to  honing 
these skills. In this edition we introduce new Synthesizing the Material problems at the end of 
Chapters 6-21. These problems sharpen students’ analytical skills in synthesis and retrosynthesis, 
and help them synthesize their knowledge by integrating chemical reactions that they have learned 
throughout the course. 
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A strong balance of synthetic methods Students need to learn methods of organic syn-
thesis that are useful, as environmentally friendly as possible, and that are placed in the best overall 
contextual framework. As mentioned earlier, our new Chapter 21 gives mainstream coverage to 
reactions that are now essential to practicing organic chemists – transitional metal organometallic 
reactions. Other modern methods that we cover include the Jacobsen and Sharpless  epoxidations 
(in The Chemistry of… boxes). In the 11th edition we incorporated the Swern oxidation 
(Section 12.4), long held as a useful oxidation method and one that provides a less toxic alternative 
to chromate oxidations in some cases. We also restored coverage of the Wolff-Kishner reduction 
(Section 16.8C) and the Baeyer-Villiger oxidation (Section 16.12), two methods whose importance 
has been proven by the test of time. The chemistry of radical reactions was also refocused and 
streamlined by reducing thermochemistry content and by centralizing the coverage of allylic and 
benzylic radical substitutions (including NBS reactions) in Chapter 10. 

“Why do these topics matter?” is a feature that bookends each chapter with a teaser in the 
opener and a captivating example of organic chemistry in the closer. The chapter opener seeks to 
whet the student’s appetite both for the core chemistry in that chapter as well as hint at a prize that 
comes at the end of the chapter in the form of a “Why do these topics matter?” vignette. These clos-
ers consist of fascinating nuggets of organic chemistry that stem from research relating to medical, 
environmental, and other aspects of organic chemistry in the world around us, as well as the history 
of the science. They show the rich relevance of what students have learned to applications that have 
direct bearing on our lives and wellbeing. For example, in Chapter 6, the opener talks about some of 
the benefits and drawbacks of making substitutions in a recipe, and then compares such changes to 
the nucleophilic displacement reactions that similarly allow chemists to change molecules and their 
properties. The closer then shows how exactly such reactivity has enabled scientists to convert simple 
table sugar into the artificial sweetener Splenda which is 600 times as sweet, but has no calories!

Key Ideas as Bullet Points The amount of content covered in organic chemistry can be over-
whelming to students. To help students focus on the most essential topics, key ideas are emphasized 
as bullet points in every section. In preparing bullet points, we have distilled appropriate concepts 
into simple declarative statements that convey core ideas accurately and clearly. No topic is ever 
presented as a bullet point if its integrity would be diminished by oversimplification, however.

“How to” Sections Students need to master important skills to support their conceptual learn-
ing. “How to” Sections throughout the text give step-by-step instructions to guide students in 
performing important tasks, such as using curved arrows, drawing chair conformations, planning 
a Grignard synthesis, determining formal charges, writing Lewis structures, and using 13C and 1H 
NMR spectra to determine structure.

The Chemistry of . . .  Virtually every instructor has the goal of showing students how organic 
chemistry relates to their field of study and to their everyday life experience. The authors assist 
their colleagues in this goal by providing boxes titled “The Chemistry of . . .” that provide interest-
ing and targeted examples that engage the student with chapter content.

Summary and Review Tools: At the end of each chapter, Summary and Review Tools 
provide visually oriented roadmaps and frameworks that students can use to help organize and 
assimilate concepts as they study and review chapter content. Intended to accommodate diverse 
learning styles, these include Synthetic Connections, Concept Maps, thematic Mechanism 
Review Summaries, and the detailed Mechanism for the Reaction boxes already mentioned. We 
also provide Helpful Hints and richly annotated illustrations throughout the text.

Special Topics: Instructors and students can use our Special Topics to augment their cover-
age in a number of areas. 13C NMR can be introduced early in the course using the special topic 
that comes after Chapter 4 on the structure of alkanes and cycloalkanes. Polymer chemistry, now 
a required topic by the American Chemistry Society for certified bachelor degrees, can be covered 
in more depth than already presented in Chapters 10 and 17 by using the special topics that fol-
low these chapters. Our special topic on electrocyclic and cycloaddition reactions can be used to 
augment students’  understanding of these reactions after their introduction to conjugated alkenes, 
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the Diels-Alder  reaction, and aromatic compounds in Chapters 13-15. In-depth coverage of some 
topics in biosynthesis and natural products chemistry can be invoked using our special topics on 
biosynthesis and alkaloids. 

OrganIzatIOn —an emphasis on the 
Fundamentals
So much of organic chemistry makes sense and can be generalized if students master and apply 
a few fundamental concepts. Therein lays the beauty of organic chemistry. If students learn the 
essential principles, they will see that memorization is not needed to succeed.

Most important is for students to have a solid understanding of structure—of hybridization 
and geometry, steric hindrance, electronegativity, polarity, formal charges, and resonance —so that 
they can make intuitive sense of mechanisms. It is with these topics that we begin in Chapter 1. 
In Chapter 2 we introduce the families of functional groups—so that students have a platform 
on which to apply these concepts. We also introduce intermolecular forces, and infrared (IR) 
spectroscopy—a key tool for identifying functional groups. Throughout the book we include cal-
culated models of molecular orbitals, electron density surfaces, and maps of electrostatic potential. 
These models enhance students’ appreciation for the role of structure in properties and reactivity. 

We begin our study of mechanisms in the context of acid-base chemistry in Chapter 3. 
Acid-base reactions are fundamental to organic reactions, and they lend themselves to introducing 
several important topics that students need early in the course: (1) curved arrow notation for illus-
trating mechanisms, (2) the relationship between free-energy changes and equilibrium constants, 
and (3) the importance of inductive and resonance effects and of solvent effects.

In Chapter 3 we present the first of many “A Mechanism for the Reaction” boxes, using an 
example that embodies both Brønsted-Lowry and Lewis acid-base principles. All throughout the 
book, we use boxes like these to show the details of key reaction mechanisms. All of the Mechanism 
for the Reaction boxes are listed in the Table of Contents so that students can easily refer to them 
when desired.

A central theme of our approach is to emphasize the relationship between structure and 
reactivity. This is why we choose an organization that combines the most useful features of a func-
tional group approach with one based on reaction mechanisms. Our philosophy is to emphasize 
mechanisms and fundamental principles, while giving students the anchor points of functional 
groups to apply their mechanistic knowledge and intuition. The structural aspects of our approach 
show students what organic chemistry is. Mechanistic aspects of our approach show students how 
it works. And wherever an opportunity arises, we show them what it does in living systems and the 
physical world around us.

In summary, our writing reflects the commitment we have as teachers to do the best we can to 
help students learn organic chemistry and to see how they can apply their knowledge to improve 
our world. The enduring features of our book have proven over the years to help students learn 
organic chemistry. The changes in our 12th edition make organic chemistry even more accessible 
and relevant. Students who use the in-text learning aids, work the problems, and take advantage of 
the resources and practice available in WileyPLUS with ORION (our online teaching and learning 
solution) will be assured of success in organic chemistry.

FOr OrganIC ChemIstry

 
a Powerful teaching and learning solution
WileyPLUS with ORION provides students with a personal, adaptive learning experience so they can 
build their proficiency on topics and use their study time most effectively. WileyPLUS with ORION 
helps students learn by working with them as their knowledge grows, by learning about them.
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New To wileyPLUS with ORION for Organic Chemistry, 12e
Hallmark review tools in the print version of Organic Chemistry such as Concept Maps and Summaries 
of Reactions are also now interactive exercises that help students develop core skills and competencies

•   New interactive Concept Map exercises
•   New interactive Summary of Reactions exercises
•   New interactive Mechanism Review exercises
•   New video walkthroughs of key mechanisms

Unique to ORION, students begin by taking a quick diagnostic for any chapter. 
This will determine each student’s baseline proficiency on each topic in the chapter. 
Students see their individual diagnostic report to help them decide what to do next 
with the help of ORION’s recommendations.

For each topic, students can either Study, or Practice. Study directs the students 
to the specific topic they choose in WileyPLUS, where they can read from the 
e-textbook, or use the variety of relevant resources available there. Students can also 
practice, using questions and feedback powered by ORION’s adaptive learn ing 
engine. Based on the results of their diagnostic and ongoing practice, ORION will 
present students with questions appropriate for their current level of under standing, 
and will continuously adapt to each student, helping them build their proficiency.

ORION includes a number of reports and ongoing recommendations for students 
to help them maintain their proficiency over time for each topic. Students can 
easily access ORION from multiple places within WileyPLUS. It does not require 
any additional registration, and there will not be any additional charge for students 
using this adaptive learning system.

begIN

PRactIce

maINtaIN

NEW INTERACTIvES: Interactive 
versions of Concept Maps, Synthetic 
Connections, and other review tools 
help students test their knowledge and 
develop core competencies.
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Reaction Explorer A student’s ability to understand mechanisms and predict synthesis reactions 
greatly impacts her/his level of success in the course. Reaction Explorer is an interactive system for 
learning and practicing reactions, syntheses and mechanisms in organic chemistry with advanced 
support for the automatic generation of random problems and curved arrow  mechanism diagrams.

Breadth and Depth in Available Assessments: Four unique vehicles for assessment are 
available to instructors for creating online homework and quizzes and are designed to enable and 
support problem-solving skill development and conceptual understanding 

End of Chapter Problems. Approximately 90% of the end of chapter problems are included 
in WileyPLUS with ORION. Many of the problems are algorithmic and feature structure 
 drawing/assessment functionality using MarvinSketch, with immediate answer feedback and 
video question assistance. A subset of these end of chapter problems is linked to guided Online 
 tutorials which are stepped-out problem-solving tutorials that walk the student through the 
problem, offering individualized feedback at each step.

Prebuilt concept mastery assignments Students must continously practice and work 
organic chemistry in order to master the concepts and skills presented in the course. Prebuilt con-
cept mastery assignments offer students ample opportunities for practice, covering all the major 
topics and concepts within an organic chemistry course. Each assignment is organized by topic and 
features feedback for incorrect answers. These assignments are drawn from a unique database of 
over 25,000 questions, over half of which require students to draw a structure using MarvinSketch.

REACTion ExPLoRER

in CHAPTER/EoC ASSESSmEnT

ConCEPT mASTERy

TEST BAnk

w I l e y P l u S  a S S e S S M e n t         For orGaniC ChemiSTry

meaninGFul PraCTiCe WiTh meChaniSmS and SynTheSiS 
(a  daTaBaSe oF over 100,000 alGoriThm-GeneraTed ProBlemS)

90-100% oF revieW ProBlemS and end oF ChaPTer 
queSTionS are Coded For online aSSeSSmenT

Pre-BuilT ConCePT maSTery aSSiGnmenTS 
(From a  daTaBaSe oF over 25,000 queSTionS)

riCh TeSTBank ConSiSTinG oF over 3,000 queSTionS

MECHANISM ExPlORER:  
valuable practice with reactions 
and mechanisms

SYNTHESIS ExPlORER:  
meaningful practice doing single 
and multi-step synthesis
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What do students receive with 
WileyPlUs with OrIOn?

•   The complete digital textbook, saving students up to 60% off the cost of a printed text.
•  Question assistance, including links to relevant sections in the online digital textbook.
•  Immediate feedback and proof of progress, 24/7.
•   Integrated, multi-media resources that address your students’ unique learning styles, levels of 

proficiency, and levels of preparation by providing multiple study paths and encourage more 
active learning. 

WileyPlUs with OrIOn student resources
Chapter 0 General Chemistry Refresher. To ensure students have mastered the necessary 
prerequisite content from general chemistry, and to eliminate the burden on instructors to review 
this material in lecture, WileyPLUS with ORION now includes a complete chapter of core general 
chemistry topics with corresponding assignments. Chapter 0 is available to students and can be 
assigned in WileyPLUS to ensure and gauge understanding of the core topics required to succeed 
in organic chemistry. 

Prelecture Assignments. Preloaded and ready to use, these assignments have been carefully 
designed to assess students prior to their coming to class. Instructors can assign these pre-created 
quizzes to gauge student preparedness prior to lecture and tailor class time based on the scores 
and participation of their students.
Video Mini-Lectures, Offce Hour Videos, and Solved Problem Videos In each 
chapter, several types of video assistance are included to help students with conceptual under-
standing and problem solving strategies. The video mini-lectures focus on challenging concepts; 
the office hours videos take these concepts and apply them to example problems, emulating the 
experience that a student would get if she or he were to attend office hours and ask for assistance 
in working a problem. The Solved Problem videos demonstrate good problems solving strategies 
for the student by walking through in text solved problems using audio and a whiteboard. The 
goal is to illustrate good problem solving strategies.

Skill Building Exercises are animated exercises with instant feedback to reinforce the key 
skills required to succeed in organic chemistry.

3D Molecular Visualizations use the latest visualization technologies to help students  visualize 
concepts with audio. Instructors can assign quizzes based on these visualizations in WileyPLUS.

What do instructors receive with 
WileyPlUs with OrIOn?
• Reliable resources that reinforce course goals inside and outside of the classroom.
•  The ability to easily identify students who are falling behind by tracking their progress and 

offering assistance easily, even before they come to office hours. Using WileyPLUS with 
ORION simplifies and automates such tasks as student performance assessment, creating 
assignments, scoring student work, keeping grades, and more.

•  Media-rich course materials and assessment content that allow you to customize your classroom 
presentation with a wealth of resources and functionality from PowerPoint slides to a database 
of rich visuals. You can even add your own materials to your WileyPLUS with ORION course.

additional Instructor resources
All Instructor Resources are available within WileyPLUS with ORION or they can be accessed 
by contacting your local Wiley Sales Representative. Many of the assets are located on the book 
companion site, www.wiley.com/college/solomons

http://www.wiley.com/college/solomons
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Test Bank Authored by Robert Rossi, of Gloucester County College, Jeffrey Allison, of Austin 
Community College, and Gloria Silva, of Carnegie Melon University.

PowerPoint Lecture slides PowerPoint Lecture Slides have been prepared by Professor 
William Tam, of the University of Guelph and his wife, Dr. Phillis Chang, and Gary Porter, of 
Bergen Community College.

Personal Response System (“Clicker”) Questions

Digital Image Library Images from the text are available online in JPEG format. Instructors 
may use these images to customize their presentations and to provide additional visual support 
for quizzes and exams.

addItIOnal stUdent resOUrCes
Study Guide and Solutions Manual (Paperback: 978-1-119-07732-9; 
 Binder-Ready: 978-1-119-07733-6)
The Study Guide and Solutions Manual for Organic Chemistry, Twelfth Edition, authored by 
Graham Solomons, Craig Fryhle, and Scott Snyder with prior contributions from Robert Johnson 
(Xavier University) and Jon Antilla (University of South Florida), contains explained solutions 
to all of the problems in the text. The Study Guide also contains:

•  An introductory essay “Solving the Puzzle—or—Structure is Everything” that serves as a bridge 
from general to organic chemistry

• Summary tables of reactions by mechanistic type and functional group
• A review quiz for each chapter
• A set of hands-on molecular model exercises
•  Solutions to problems in the Special Topics that are found with the text in WileyPLUS.

mOleCUlar VIsIOns™ mOdel KIts 
We believe that the tactile and visual experience of manipulating physical models is key to 
 students’ understanding that organic molecules have shape and occupy space. To support our 
pedagogy, we have arranged with the Darling Company to bundle a special ensemble of Molecular 
Visions™ model kits with our book (for those who choose that option). We use Helpful Hint icons 
and margin notes to frequently encourage students to use hand-held models to investigate the 
three-dimensional shape of molecules we are discussing in the book.

CUstOmIzatIOn and FlexIBle 
 OPtIOns tO meet yOUr needs
Wiley Custom Select allows you to create a textbook with precisely the content you want, in a 
simple, three-step online process that brings your students a cost-efficient alternative to a tradi-
tional textbook. Select from an extensive collection of content at http://customselect.wiley.com, 
upload your own materials as well, and select from multiple delivery formats—full color or black 
and white print with a variety of binding options, or eBook. Preview the full text online, get an 
instant price quote, and submit your order; we’ll take it from there.

WileyFlex offers content in flexible and cost-saving options to students. Our goal is to deliver 
our learning materials to our customers in the formats that work best for them, whether it’s a tra-
ditional text, eTextbook, WileyPLUS, loose-leaf binder editions, or customized content through 
Wiley Custom Select.

http://customselect.wiley.com
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to the student

Contrary to what you may have heard, organic chemistry does not 
have to be a difficult course. It will be a rigorous course, and it will 
offer a challenge. But you will learn more in it than in almost any 
course you will take—and what you learn will have a special rel-
evance to life and the world around you. However, because organic 
chemistry can be approached in a logical and systematic way, you 
will find that with the right study habits, mastering organic chemis-
try can be a deeply satisfying experience. Here, then, are some sug-
gestions about how to study:

1. keep up with your work from day to day—never let 
yourself get behind. Organic chemistry is a course in which 
one idea almost always builds on another that has gone before. 
It is essential, therefore, that you keep up with, or better yet, 
be a little ahead of your instructor. Ideally, you should try to 
stay one day ahead of your instructor’s lectures in your own 
class preparations. Your class time, then, will be much more 
helpful because you will already have some understanding of 
the assigned material. Use WileyPlus study tools (Including 
ORION) to help with your pre-class learning. 

2. Study material in small units, and be sure that you 
understand each new section before you go on to 
the next. Again, because of the cumulative nature of organic 
chemistry, your studying will be much more effective if you 
take each new idea as it comes and try to understand it com-
pletely before you move on to the next concept.

3. Work all of the in-chapter and assigned problems. 
One way to check your progress is to work each of the in-
chapter problems when you come to it. These problems have 
been written just for this purpose and are designed to help you 
decide whether or not you understand the material that has 
just been explained. You should also carefully study the Solved 
Problems. If you understand a Solved Problem and can work 
the related in-chapter problem, then you should go on; if you 
cannot, then you should go back and study the preceding mate-
rial again. Work all of the problems assigned by your instructor 
from the text and WileyPlus. A notebook for homework is 
helpful. When you go to your instructor for help, show her/
him your attempted homework, either in written form or in 
WileyPlus online format. 

4. Write when you study. Write the reactions, mechanisms, 
structures, and so on, over and over again. Organic chemistry 
is best assimilated through the fingertips by writing, and not 
through the eyes by simply looking, or by highlighting mate-

rial in the text, or by referring to flash cards. There is a good 
reason for this. Organic structures, mechanisms, and reactions 
are complex. If you simply examine them, you may think you 
understand them thoroughly, but that will be a misperception. 
The reaction mechanism may make sense to you in a certain 
way, but you need a deeper understanding than this. You need 
to know the material so thoroughly that you can explain it to 
someone else. This level of understanding comes to most of us 
(those of us without photographic memories) through writing. 
Only by writing the reaction mechanisms do we pay sufficient 
attention to their details, such as which atoms are connected 
to which atoms, which bonds break in a reaction and which 
bonds form, and the three-dimensional aspects of the struc-
tures. When we write reactions and mechanisms, connections 
are made in our brains that provide the long-term memory 
needed for success in organic chemistry. We virtually guarantee 
that your grade in the course will be directly proportional to the 
number of pages of paper that your fill with your own writing 
in studying during the term.

5. Learn by teaching and explaining. Study with your stu-
dent peers and practice explaining concepts and mechanisms 
to each other. Use the Learning Group Problems and other 
exercises your instructor may assign as vehicles for teaching and 
learning interactively with your peers. 

6. Use the answers to the problems in the Study Guide 
in the proper way. Refer to the answers only in two cir-
cumstances: (1) When you have finished a problem, use the 
Study Guide to check your answer. (2) When, after making 
a real effort to solve the problem, you find that you are com-
pletely stuck, then look at the answer for a clue and go back to 
work out the problem on your own. The value of a problem is 
in solving it. If you simply read the problem and look up the 
answer, you will deprive yourself of an important way to learn.

7. Use molecular models when you study. Because of the 
three-dimensional nature of most organic molecules, molecular 
models can be an invaluable aid to your understanding of them. 
When you need to see the three-dimensional aspect of a partic-
ular topic, use the Molecular Visions™ model set that may have 
been packaged with your textbook, or buy a set of models sepa-
rately. An appendix to the Study Guide that accompanies this 
text provides a set of highly useful molecular model exercises.

8. make use of the rich online teaching resources in 
WileyPLUS including ORION’s adaptive learning system.



Bonding and Molecular Structure
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c h a p t e r
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Organic chemistry plays a role in all aspects of our lives, from the clothing we wear, to the pixels of our  television 

and computer screens, to preservatives in food, to the inks that color the pages of this book. if you take the time to under-

stand organic chemistry, to learn its overall logic, then you will truly have the power to change society. indeed, organic 

chemistry provides the power to synthesize new drugs, to engineer molecules that can make computer processors run 

more quickly, to understand why grilled meat can cause cancer and how its effects can be combated, and to design ways 

to knock the calories out of sugar while still making food taste deliciously sweet. it can explain biochemical processes like 

aging, neural functioning, and cardiac arrest, and show how we can prolong and improve life. it can do almost anything.

In thIs chapter we wIll consIder:

•	 what kinds of atoms make up organic molecules

•	 the principles that determine how the atoms in organic molecules are bound together

•	 how best to depict organic molecules

[ whY do these topIcs Matter? ] at the end of the chapter, we will see how some of the unique organic 

 structures that nature has woven together possess amazing properties that we can harness to aid human health. See 

 for additional examples, videos, and practice.

1
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2  ChapTer 1 the BaSicS: Bonding and Molecular Structure

Organic chemistry is the chemistry of compounds that contain the element carbon. 
If a compound does not contain the element carbon, it is said to be inorganic.

Look for a moment at the periodic table inside the front cover of this book. More than 
a hundred elements are listed there. The question that comes to mind is this: why should 
an entire field of chemistry be based on the chemistry of compounds that contain this 
one element, carbon? There are several reasons, the primary one being this: carbon com-
pounds are central to the structure of living organisms and therefore to the existence 
of life on Earth. We exist because of carbon compounds.

What is it about carbon that makes it the element that nature has chosen for living 
organisms? There are two important reasons: carbon atoms can form strong bonds to 
other carbon atoms to form rings and chains of carbon atoms, and carbon atoms can also 
form strong bonds to elements such as hydrogen, nitrogen, oxygen, and sulfur. Because 
of these bond-forming properties, carbon can be the basis for the huge diversity of com-
pounds necessary for the emergence of living organisms.

From time to time, writers of science fiction have speculated about the possibility of 
life on other planets being based on the compounds of another element—for example, 
silicon, the element most like carbon. However, the bonds that silicon atoms form to each 
other are not nearly as strong as those formed by carbon, and therefore it is very unlikely 
that silicon could be the basis for anything equivalent to life as we know it.

1.1A What Is the Origin of the Element Carbon?

Through the efforts of physicists and cosmologists, we now understand much of how 
the elements came into being. The light elements hydrogen and helium were formed at 
the beginning, in the Big Bang. Lithium, beryllium, and boron, the next three elements, 
were formed shortly thereafter when the universe had cooled somewhat. All of the heavier 
elements were formed millions of years later in the interiors of stars through reactions in 
which the nuclei of lighter elements fuse to form heavier elements.

The energy of stars comes primarily from the fusion of hydrogen nuclei to produce 
helium nuclei. This nuclear reaction explains why stars shine. Eventually some stars begin 
to run out of hydrogen, collapse, and explode—they become supernovae. Supernovae 
explosions scatter heavy elements throughout space. Eventually, some of these heavy ele-
ments drawn by the force of gravity became part of the mass of planets like the Earth.

1.1B How Did Living Organisms Arise?

This question is one for which an adequate answer cannot be given now because there 
are many things about the emergence of life that we do not understand. However, we do 
know this. Organic compounds, some of considerable complexity, are detected in outer 
space, and meteorites containing organic compounds have rained down on Earth since it 
was formed. A meteorite that fell near Murchison, Victoria, Australia, in 1969 was found 
to contain over 90 different amino acids, 19 of which are found in living organisms on 
Earth. While this does not mean that life arose in outer space, it does suggest that events 
in outer space may have contributed to the emergence of life on Earth.

In 1924 Alexander Oparin, a biochemist at the Moscow State University,  postulated that 
life on Earth may have developed through the gradual evolution of carbon-based molecules 
in a “primordial soup” of the compounds that were thought to exist on a  prebiotic Earth: 
methane, hydrogen, water, and ammonia. This idea was tested by experiments carried out 
at the University of Chicago in 1952 by Stanley Miller and Harold Urey. They showed that 
amino acids and other complex organic compounds are synthesized when an electric spark 
(think of lightning) passes through a flask containing a mixture of these four compounds 
(think of the early atmosphere). Miller and Urey reported in their 1953 publication that 
five amino acids (essential constituents of proteins) were formed. In 2008, examination 
of archived solutions from Miller and Urey’s original experiments revealed that 22 amino 
acids, rather than the 5 amino acids originally reported, were actually formed.

1.1  Life and The ChemisTry of CarBon  
Compounds—We are sTardusT
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Supernovae were the crucibles in 
which the heavy elements were 
formed.



 1.2 aTomiC sTruCTure 3

Similar experiments have shown that other precursors of biomolecules can also arise 
in this way—compounds such as ribose and adenine, two components of RNA. Some 
RNA molecules can not only store genetic information as DNA does, they can also act 
as catalysts, as enzymes do.

There is much to be discovered to explain exactly how the compounds in this soup 
became living organisms, but one thing seems certain. The carbon atoms that make up 
our bodies were formed in stars, so, in a sense, we are stardust.

1.1C Development of the Science of Organic Chemistry

The science of organic chemistry began to flower with the demise of a nineteenth century 
theory called vitalism. According to vitalism, organic compounds were only those that 
came from living organisms, and only living things could synthesize organic compounds 
through intervention of a vital force. Inorganic compounds were considered those com-
pounds that came from nonliving sources. Friedrich Wöhler, however, discovered in 
1828 that an organic compound called urea (a constituent of urine) could be made by 
evaporating an aqueous solution of the inorganic compound ammonium cyanate. With 
this discovery, the synthesis of an organic compound, began the evolution of organic 
chemistry as a scientific discipline.

NH4
+NCO− C

H2N NH2

O

Ammonium cyanate Urea

heat

An RNA molecule

the cheMiStry of... natural products

despite the demise of vitalism in science, the word “organic” is still used today by some 
people to mean “coming from living organisms” as in the terms “organic vitamins” and 
“organic fertilizers.” the commonly used term “organic food” means that the food was 
grown without the use of synthetic fertilizers and pesticides. an “organic vitamin” means 
to these people that the vitamin was isolated from a natural source and not synthesized by 
a chemist. While there are sound arguments to be made against using food contaminated 
with certain pesticides, while there may be environmental benefts to be obtained from or-
ganic farming, and while “natural” vitamins may contain benefcial substances not present 
in synthetic vitamins, it is impossible to argue that pure 
“natural” vitamin c, for example, is healthier than pure 
“synthetic” vitamin c, since the two substances are iden-
tical in all respects. in science today, the study of com-
pounds from living organisms is called natural products 
chemistry. in the closer to this chapter we will consider 
more about why natural products chemistry is important. OHHO

CH—CH2OH
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O
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Vitamin c is found in various 
citrus fruits.

1.2 aTomiC sTruCTure

Before we begin our study of the compounds of carbon we need to review some basic but 
familiar ideas about the chemical elements and their structure.

• The compounds we encounter in chemistry are made up of elements combined in 
different proportions.

• Elements are made up of atoms. An atom (Fig. 1.1) consists of a dense, posi-
tively charged nucleus containing protons and neutrons and a surrounding cloud 
of  electrons.

Each proton of the nucleus bears one positive charge; electrons bear one negative 
charge. Neutrons are electrically neutral; they bear no charge. Protons and neutrons have 

Electron cloud

Nucleus

FIgure 1.1 an atom is composed of a tiny nucleus containing protons and 
neutrons and a large surrounding volume containing electrons. the diameter 
of a typical atom is about 10,000 times the diameter of its nucleus.
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nearly equal masses (approximately 1 atomic mass unit each) and are about 1800 times as 
heavy as electrons. Most of the mass of an atom, therefore, comes from the mass of the 
nucleus; the atomic mass contributed by the electrons is negligible. Most of the volume 
of an atom, however, comes from the electrons; the volume of an atom occupied by the 
electrons is about 10,000 times larger than that of the nucleus.

The elements commonly found in organic molecules are carbon, hydrogen, nitrogen, 
oxygen, phosphorus, and sulfur, as well as the halogens (fluorine, chlorine, bromine, and 
iodine).

Each element is distinguished by its atomic number (Z), a number equal to the 
number of protons in its nucleus. Because an atom is electrically neutral, the atomic 
number also equals the number of electrons surrounding the nucleus.

1.2A Isotopes

Before we leave the subject of atomic structure and the periodic table, we need to examine 
one other observation: the existence of atoms of the same element that have different 
masses.

For example, the element carbon has six protons in its nucleus giving it an atomic 
number of 6. Most carbon atoms also have six neutrons in their nuclei, and because each 
proton and each neutron contributes one atomic mass unit (1 amu) to the mass of the 
atom, carbon atoms of this kind have a mass number of 12 and are written as 12c.

• Although all the nuclei of all atoms of the same element will have the same 
number of protons, some atoms of the same element may have different masses 
because they have different numbers of neutrons. Such atoms are called isotopes.

For example, about 1% of the atoms of elemental carbon have nuclei containing 7 neu-
trons, and thus have a mass number of 13. Such atoms are written 13c. A tiny fraction of 
carbon atoms have 8 neutrons in their nucleus and a mass number of 14. Unlike atoms of 
carbon-12 and carbon-13, atoms of carbon-14 are radioactive. The 14c isotope is used in 
carbon dating. The three forms of carbon, 12c, 13c, and 14c, are isotopes of one another.

Most atoms of the element hydrogen have one proton in their nucleus and have no 
neutron. They have a mass number of 1 and are written 1h. A very small percentage 
(0.015%) of the hydrogen atoms that occur naturally, however, have one neutron in their 
nucleus. These atoms, called deuterium atoms, have a mass number of 2 and are written 
2h. An unstable (and radioactive) isotope of hydrogen, called tritium (3h), has two neu-
trons in its nucleus.

There are two stable isotopes of nitrogen, 14n and 15n. How many protons and neutrons 
does each isotope have?

Practice Problem 1.1

1.2B Valence Electrons

We discuss the electron configurations of atoms in more detail in Section 1.10. For the 
moment we need only to point out that the electrons that surround the nucleus exist 
in shells of increasing energy and at increasing distances from the nucleus. The most 
important shell, called the valence shell, is the outermost shell because the electrons of 
this shell are the ones that an atom uses in making chemical bonds with other atoms to 
form compounds.

• How do we know how many electrons an atom has in its valence shell? We look at 
the periodic table. The number of electrons in the valence shell (called valence elec-
trons) is equal to the group number of the atom. For example, carbon is in group 
IVA and carbon has four valence electrons; oxygen is in group VIA and oxygen has 
six valence electrons. The halogens of group VIIA all have seven electrons.

Practice Problem 1.2 How many valence electrons does each of the following atoms have?
(a) na  (b) cl  (c) Si  (d) B  (e) ne  (f) n
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[ helpFul hInt ]
terms and concepts that are 
fundamentally important to your 
learning organic chemistry are 
set in bold blue type. you should 
learn them as they are introduced. 
these terms are also defined in the 
glossary.

1.3 ChemiCaL Bonds: The oCTeT ruLe

The first explanations of the nature of chemical bonds were advanced by G. N. Lewis (of 
the University of California, Berkeley) and W. Kössel (of the University of Munich) in 
1916. Two major types of chemical bonds were proposed:

1. Ionic (or electrovalent) bonds are formed by the transfer of one or more electrons 
from one atom to another to create ions.
2. Covalent bonds result when atoms share electrons.

The central idea in their work on bonding is that atoms without the electronic con-
figuration of a noble gas generally react to produce such a configuration because these 
configurations are known to be highly stable. For all of the noble gases except helium, this 
means achieving an octet of electrons in the valence shell.

• The valence shell is the outermost shell of electrons in an atom.

• The tendency for an atom to achieve a configuration where its valence shell contains 
eight electrons is called the octet rule.

The concepts and explanations that arise from the original propositions of Lewis and 
Kössel are satisfactory for explanations of many of the problems we deal with in organic 
chemistry today. For this reason we shall review these two types of bonds in more modern 
terms.

1.3A Ionic Bonds

Atoms may gain or lose electrons and form charged particles called ions.

• An ionic bond is an attractive force between oppositely charged ions.
One source of such ions is a reaction between atoms of widely differing electronegativities 
(Table 1.1).

• Electronegativity is a measure of the ability of an atom to attract electrons.

• Electronegativity increases as we go across a horizontal row of the periodic table 
from left to right and it increases as we go up a vertical column (Table 1.1).

An example of the formation of an ionic bond is the reaction of lithium and fluorine 
atoms:

Li F Li F

–
+

+ +

Lithium, a typical metal, has a very low electronegativity; fluorine, a nonmetal, is the 
most electronegative element of all. The loss of an electron (a negatively charged species) 

table 1.1 electronegatIvItIes oF soMe oF the eleMents

Increasing
electronegativity

Increasing electronegativity

Li
1.0

Be
1.5

B
2.0

H
2.1

C
2.5

N
3.0

O
3.5

F
4.0

Na
0.9

Mg
1.2

Al
1.5

Si
1.8

P
2.1

S
2.5

Cl
3.0

K
0.8

Br
2.8

[ helpFul hInt ]
We will use electronegativity 
frequently as a tool for 
understanding the properties and 
reactivity of organic molecules.
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by the lithium atom leaves a lithium cation (li+); the gain of an electron by the fluorine 
atom gives a fluoride anion (f−).

• Ions form because atoms can achieve the electronic configuration of a noble gas by 
gaining or losing electrons.

The lithium cation with two electrons in its valence shell is like an atom of the noble gas 
helium, and the fluoride anion with eight electrons in its valence shell is like an atom 
of the noble gas neon. Moreover, crystalline lithium fluoride forms from the individual 
lithium and fluoride ions. In this process, negative fluoride ions become surrounded 
by positive lithium ions, and positive lithium ions by negative fluoride ions. In this 
 crystalline state, the ions have substantially lower energies than the atoms from which 
they have been formed. Lithium and fluorine are thus “stabilized” when they react to form 
crystalline lithium fluoride. We represent the formula for lithium fluoride as lif, because 
that is the simplest formula for this ionic compound.

Ionic substances, because of their strong internal electrostatic forces, are usually very 
high melting solids, often having melting points above 1000 °C. In polar solvents, such 
as water, the ions are solvated (see Section 2.13D), and such solutions usually conduct 
an electric current.

• Ionic compounds, often called salts, form only when atoms of very different 
 electronegativities transfer electrons to become ions.

Practice Problem 1.3 Using the periodic table, which element in each pair is more electronegative?
(a) Si, O  (b) N, C  (c) Cl, Br  (d) S, P

1.3B Covalent Bonds and Lewis Structures

When two or more atoms of the same or similar electronegativities react, a complete 
transfer of electrons does not occur. In these instances the atoms achieve noble gas con-
figurations by sharing electrons.

• Covalent bonds form by sharing of electrons between atoms of similar electronega-
tivities to achieve the configuration of a noble gas.

• Molecules are composed of atoms joined exclusively or predominantly by covalent 
bonds.

Molecules may be represented by electron-dot formulas or, more conveniently, by formu-
las where each pair of electrons shared by two atoms is represented by a line.

• A dash structural formula has lines that show bonding electron pairs and includes 
elemental symbols for the atoms in a molecule.

Some examples are shown here:
1. Hydrogen, being in group IA of the periodic table, has one valence electron. Two 
hydrogen atoms share electrons to form a hydrogen molecule, h2.

h2  h⋅ + ⋅h     ⟶ h⋅⋅h  usually written  h−h

2. Because chlorine is in group VIIA, its atoms have seven valence electrons. Two 
chlorine atoms can share electrons (one electron from each) to form a molecule of cl2.

cl2  ⋅⋅cl⋅⋅
⋅⋅ ⋅ + ⋅cl⋅⋅

⋅⋅ ⋅⋅     ⟶ ⋅⋅cl⋅⋅
⋅⋅ ⋅⋅cl⋅⋅

⋅⋅ ⋅⋅  usually written  ⋅⋅cl⋅⋅
⋅⋅−cl⋅⋅

⋅⋅ ⋅⋅

3. A carbon atom (group IVA) with four valence electrons can share each of these 
electrons with four hydrogen atoms to form a molecule of methane, ch4.

H

H

H C HCH4 usually written+ 4 HC
H

H
H C H
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Two carbon atoms can use one electron pair between them to form a carbon–carbon 
single bond while also bonding hydrogen atoms or other groups to achieve an octet of 
valence electrons. Consider the example of ethane below.

Ethane

H

H

H C

H

H

C HC2H6
and as a 

dash formula

H

H
H C C

H

H
H

These formulas are often called Lewis structures; in writing them we show all of the 
valence electrons. Unshared electron pairs are shown as dots, and in dash structural for-
mulas, bonding electron pairs are shown as lines.

4. Atoms can share two or more pairs of electrons to form multiple covalent bonds. For 
example, two nitrogen atoms possessing five valence electrons each (because nitrogen is 
in group VA) can share electrons to form a triple bond between them.

n2  ⋅⋅n⋮ ⋮n⋅⋅  and as a dash formula  ⋅⋅n≡n⋅⋅

Carbon atoms can also share more than one electron pair with another atom to form a 
multiple covalent bond. Consider the examples of a carbon–carbon double bond in 
ethene (ethylene) and a carbon–carbon triple bond in ethyne (acetylene).

C2H4
and as a 

dash formula

Ethene
H

H

H

H

C C
H

H

H

H
C C

C2H2
and as a 

dash formula
Ethyne

C C HHC C HH

5. Ions, themselves, may contain covalent bonds. Consider, as an example, the 
 ammonium ion.

H

H

H N HNH4 and as a
dash formula

H

H
H N H

+ + +

Practice Problem 1.4Consider the following compounds and decide whether the bond in them would be ionic 
or covalent.
(a) Kcl  (b) f2  (c) ph3  (d) cBr4

• • 1.4 How To WriTe LeWis sTruCTures

Several simple rules allow us to draw proper Lewis structures:
1. Lewis structures show the connections between atoms in a molecule or ion 
using only the valence electrons of the atoms involved. Valence electrons are those 
of an atom’s outermost shell.
2. For main group elements, the number of valence electrons a neutral atom 
brings to a Lewis structure is the same as its group number in the periodic table. 

[ helpFul hInt ]
the ability to write proper Lewis 
structures is one of the most 
important tools for learning organic 
chemistry.
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Carbon, for example, is in group IVA and has four valence electrons; the halogens (e.g., 
fluorine) are in group VIIA and each has seven valence electrons; hydrogen is in group 
IA and has one valence electron.
3. If the structure we are drawing is a negative ion (an anion), we add one electron 
for each negative charge to the original count of valence electrons. If the structure 
is a positive ion (a cation), we subtract one electron for each positive charge.
4. In drawing Lewis structures we try to give each atom the electron  configuration 
of a noble gas. To do so, we draw structures where atoms share electrons to form 
 covalent bonds or transfer electrons to form ions.

a. Hydrogen forms one covalent bond by sharing its electron with an electron of 
another atom so that it can have two valence electrons, the same number as in the 
noble gas helium.
b. Carbon forms four covalent bonds by sharing its four valence electrons with four 
valence electrons from other atoms, so that it can have eight electrons (the same as 
the electron configuration of neon, satisfying the octet rule).
c. To achieve an octet of valence electrons, elements such as nitrogen, oxygen, and 
the halogens typically share only some of their valence electrons through covalent 
bonding, leaving others as unshared electron pairs. Nitrogen typically shares three 
electrons, oxygen two, and the halogens one.

The following problems illustrate the rules above.

Solved Problem 1.1

Write the Lewis structure of ch3f.

strategY and answer:
1. We find the total number of valence electrons of all the atoms:

4 + 3(1) + 7 = 14

  
↑
c  

↑
3h   

↑
f

2. We use pairs of electrons to form bonds between all atoms that are bonded to each other. We represent these bonding 
pairs with lines. In our example this requires four pairs of electrons (8 of the 14 valence electrons).

h−

h

c

h

−f

3. We then add the remaining electrons in pairs so as to give each hydrogen 2 electrons (a duet) and every other atom 
8 electrons (an octet). In our example, we assign the remaining 6 valence electrons to the fluorine atom in three non-
bonding pairs.

CH

H

F

H

[ helpFul hInt ]
“honc if you love organic 
chemistry,” as shown below, is a 
useful mnemonic to remember the 
typical number of electrons that 
hydrogen, oxygen, nitrogen, and 
carbon share with other atoms to 
reach a full octet; it also reflects 
the number of bonds that these 
atoms like to make in most organic 
molecules.

Hydrogen = 1 electron (or bond)

Oxygen = 2 electrons (or bonds)

Nitrogen = 3 electrons (or bonds)

Carbon = 4 electrons (or bonds)

Practice Problem 1.5 Write the Lewis structure of (a) ch2f2 (difluoromethane) and (b) chcl3 (chloroform).
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Solved Problem 1.2

Write a Lewis structure for methylamine (ch3nh2).

strategY and answer:
1. We find the total number of valence electrons for all the atoms.

4  5  5(1) = 14 = 7 pairs

  
↑
c  

↑
n  

↑
5h

2. We use one electron pair to join the carbon and nitrogen.

c−n

3. We use three pairs to form single bonds between the carbon and three hydrogen atoms.
4. We use two pairs to form single bonds between the nitrogen atom and two hydrogen atoms.
5. This leaves one electron pair, which we use as a lone pair on the nitrogen atom.

h−

h

c

h

−

 
 
n⋅ ⋅

h

−h

Practice Problem 1.6Write the Lewis structure of ch3oh.

5. If necessary, we use multiple bonds to satisfy the octet rule (i.e., give atoms the 
noble gas configuration). The carbonate ion (co3

2−) illustrates this:
2−

OO

O

C

The organic molecules ethene (c2h4) and ethyne (c2h2), as mentioned earlier, have a 
double and triple bond, respectively:

H Hand C C

H

H

H

H

C C

Solved Problem 1.3

Write the Lewis structure of ch2o (formaldehyde).

strategY and answer:
1. Find the total number of valence electrons of all the atoms:

2(1) + 1(4) + 1(6) = 12

  
↑

2h  
↑

1c  
↑

1o

2. (a) Use pairs of electrons to form single bonds.

C
HH

O

(continues on next page)




